Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate.

نویسندگان

  • Daiguan Yu
  • James A Sawitzke
  • Hilary Ellis
  • Donald L Court
چکیده

A phage lambda-based recombination system, Red, can be used for high-efficiency mutagenesis, repair, and engineering of chromosomal or episomal DNA in vivo in Escherichia coli. When long linear double-stranded DNA with short flanking homologies to their targets are used for the recombination, the lambda Exo, Beta, and Gam proteins are required. The current model is: (i) Gam inhibits the host RecBCD activity, thereby protecting the DNA substrate for recombination; (ii) Exo degrades from each DNA end in a 5' --> 3' direction, creating double-stranded DNA with 3' single-stranded DNA tails; and (iii) Beta binds these 3' overhangs to protect and anneal them to complementary sequences. We have tested this model for Red recombination by using electroporation to introduce overlapping, complementary oligonucleotides that when annealed in vivo approximate the recombination intermediate that Exo should create. Using this technique we found Exo-independent recombination. Surprisingly, a similarly constructed substrate with 5' overhangs recombined more efficiently. This 5' overhang recombination required both Exo and Beta for high levels of recombination and the two oligonucleotides need to overlap by only 6 bp on their 3' ends. Results indicate that Exo may load Beta onto the 3' overhang it produces. In addition, multiple overlapping oligonucleotides were successfully used to generate recombinants in vivo, a technique that could prove useful for many genetic engineering procedures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases

Lambda Red recombineering is a powerful technique for making targeted genetic changes in bacteria. However, many applications are limited by the frequency of recombination. Previous studies have suggested that endogenous nucleases may hinder recombination by degrading the exogenous DNA used for recombineering. In this work, we identify ExoVII as a nuclease which degrades the ends of single-stra...

متن کامل

Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli

The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been ...

متن کامل

Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli

UNLABELLED Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining subst...

متن کامل

Recombineering using RecTE from Pseudomonas syringae.

In this report, we describe the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecET proteins encoded by the lambda and Rac bacteriophages of Escherichia coli. The abil...

متن کامل

Enhanced levels of Red-mediated recombinants in mismatch repair mutants

Homologous recombination can be used to generate recombinants on episomes or directly on the Escherichia coli chromosome with PCR products or synthetic single-stranded DNA (ssDNA) oligonucleotides (oligos). Such recombination is possible because bacteriophage -encoded functions, called Red, efficiently recombine linear DNA with homologies as short as 20–70 bases. This technology, termed recombi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 2003